Showing 1 - 10 of 14,783
We explore the performance of mixed-frequency predictive regressions for stock returns from the perspective of a Bayesian investor. We develop a constrained parameter learning approach for sequential estimation allowing for belief revisions. Empirically, we find that mixed-frequency models...
Persistent link: https://www.econbiz.de/10014348997
In asset pricing, most studies focus on finding new factors such as macroeconomic factors or firm characteristics to explain risk premium. Investigating whether these factors are useful in forecasting stock returns remains active research in the field of finance and computer science. This paper...
Persistent link: https://www.econbiz.de/10014235825
The growing availability of financial and macroeconomic data sets including a large number of time series (hence the high dimensionality) calls for econometric methods providing a convenient and parsimonious representation of the covariance structure both in the time and the cross-sectional...
Persistent link: https://www.econbiz.de/10013112480
Persistent link: https://www.econbiz.de/10012991173
We develop novel multivariate time series models using Bayesian additive regression trees that posit nonlinear relationships among macroeconomic variables, their lags, and possibly the lags of the errors. The variance of the errors can be stable, driven by stochastic volatility (SV), or follow a...
Persistent link: https://www.econbiz.de/10013238045
This paper considers Bayesian regression with normal and double-exponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range...
Persistent link: https://www.econbiz.de/10013317338
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced...
Persistent link: https://www.econbiz.de/10012405305
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced...
Persistent link: https://www.econbiz.de/10012501159
We study the performance of Bayesian model averaging as a forecasting method for a large panel of time series and compare its performance to principal components regression (PCR). We show empirically that these forecasts are highly correlated implying similar mean-square forecast errors. Applied...
Persistent link: https://www.econbiz.de/10014039176
We develop methodology and theory for a general Bayesian approach towards dynamic variable selection in high …
Persistent link: https://www.econbiz.de/10014345015