Showing 1 - 3 of 3
In this paper we study convolution residuals, that is, if <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$X_1,X_2,\ldots ,X_n$$</EquationSource> </InlineEquation> are independent random variables, we study the distributions, and the properties, of the sums <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\sum _{i=1}^lX_i-t$$</EquationSource> </InlineEquation> given that <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$\sum _{i=1}^kX_it$$</EquationSource> </InlineEquation>, where <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$t\in \mathbb R $$</EquationSource> </InlineEquation>, and <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$1\le k\le l\le n$$</EquationSource> </InlineEquation>....</equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010995062
Earlier researchers have studied some aspects of the classes of distribution functions with decreasing ?-percentile residual life (DPRL(?)), 0 ? 1. The purpose of this paper is to note some further properties of these classes, and to initiate a theory of nonparametric statistical estimation of...
Persistent link: https://www.econbiz.de/10008509906
In this paper we study a family of stochastic orders of random variables defined via the comparison of their percentile residual life functions. Some interpretations of these stochastic orders are given, and various properties of them are derived. The relationships to other stochastic orders are...
Persistent link: https://www.econbiz.de/10008513118