Showing 1 - 10 of 1,677
Two shrinkage estimators for the global minimum variance portfolio that dominate the traditional estimator with respect to the out-of-sample variance of the portfolio return are derived. The presented results hold for any number of observations n = d 2 and number of assets d = 4. The...
Persistent link: https://www.econbiz.de/10010298777
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their ratio converging to a finite, nonzero limit. As...
Persistent link: https://www.econbiz.de/10010228456
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal within a class of nonlinear shrinkage estimators. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their...
Persistent link: https://www.econbiz.de/10011630780
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012584105
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012030045
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012165715
Numerous heavy-tailed distributions are used for modeling financial data and in problems related to the modeling of economics processes. These distributions have higher peaks and heavier tails than normal distributions. Moreover, in some situations, we cannot observe complete information about...
Persistent link: https://www.econbiz.de/10011606719
The problem of instrument proliferation and its consequences (overfitting of the endogenous explanatory variables, biased IV and GMM estimators, weakening of the power of the overidentification tests) are well known. This paper introduces a statistical method to reduce the instrument count. The...
Persistent link: https://www.econbiz.de/10011716035
The paper explores the effect of measurement errors on the estimation of a linear panel data model. The conventional fixed effects estimator, which ignores measurement errors, is biased. By correcting for the bias one can construct consistent and asymptotically normal estimators. In addition, we...
Persistent link: https://www.econbiz.de/10010264605
We propose two simple bias reduction procedures that apply to estimators in a general static simultaneous equation model and which are valid under reatively weak distributional assumptions for the errors. Standard jackknife estimators, as applied to 2SLS, may not reduce the bias of the exogenous...
Persistent link: https://www.econbiz.de/10010288778