Showing 1 - 10 of 1,565
The aggregation of individual random AR(1) models generally leads to an AR(∞∞) process. We provide two consistent …
Persistent link: https://www.econbiz.de/10010412648
A measurement error model is a regression model with (substantial) measurement errors in the variables. Disregarding these measurement errors in estimating the regression parameters results in asymptotically biased estimators. Several methods have been proposed to eliminate, or at least to...
Persistent link: https://www.econbiz.de/10010332971
Lam and Schoeni (1993) consider an equation where earnings are explained by schooling and ability. They assume that ability data are lacking and that schooling is measured with error. The estimate obtained by regressing earnings on schooling thus contains omitted variable bias (OVB), which is...
Persistent link: https://www.econbiz.de/10010335096
Consider an observed binary regressor D and an unobserved binary variable D*, both of which affect some other variable Y. This paper considers nonparametric identification and estimation of the effect of D on Y , conditioning on D* = 0. For example, suppose Y is a person's wage, the unobserved D...
Persistent link: https://www.econbiz.de/10010277518
Consider an observed binary regressor D and an unobserved binary variable D*, both of which affect some other variable Y . This paper considers nonparametric identification and estimation of the effect of D on Y , conditioning on D* = 0. For example, suppose Y is a person's wage, the unobserved...
Persistent link: https://www.econbiz.de/10010318502
Estimators of regression coefficients are known to be asymptotically normally distributed, provided certain regularity conditions are satisfied. In small samples and if the noise is not normally distributed, this can be a poor guide to the quality of the estimators. The paper addresses this...
Persistent link: https://www.econbiz.de/10011349717
Consider an observed binary regressor D and an unobserved binary variable D*, both of which affect some other variable Y. This paper considers nonparametric identification and estimation of the effect of D on Y , conditioning on D* = 0. For example, suppose Y is a person's wage, the unobserved D...
Persistent link: https://www.econbiz.de/10003735947
A measurement error model is a regression model with (substantial) measurement errors in the variables. Disregarding these measurement errors in estimating the regression parameters results in asymptotically biased estimators. Several methods have been proposed to eliminate, or at least to...
Persistent link: https://www.econbiz.de/10003135841
We develop methods of non-parametric estimation for the Expected Shortfall of possibly heavy tailed asset returns that leads to asymptotically standard inference. We use a tail-trimming indicator to dampen extremes negligibly, ensuring standard Gaussian inference, and a higher rate of...
Persistent link: https://www.econbiz.de/10013090751
The binary-choice regression models such as probit and logit are used to describe the effect of explanatory variables on a binary response variable. Typically estimated by the maximum likelihood method, estimates are very sensitive to deviations from a model, such as heteroscedasticity and data...
Persistent link: https://www.econbiz.de/10012730272