Showing 1 - 10 of 1,398
This paper is concerned with problem of variable selection and forecasting in the presence of parameter instability. There are a number of approaches proposed for forecasting in the presence of breaks, including the use of rolling windows or exponential down-weighting. However, these studies...
Persistent link: https://www.econbiz.de/10012258549
On purpose to extract trend and cycle from a time series many competing techniques have been developed. The probably most prevalent is the Hodrick Prescott filter. However this filter suffers from diverse shortcomings, especially the subjective choice of its penalization parameter. To this point...
Persistent link: https://www.econbiz.de/10010350102
We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under...
Persistent link: https://www.econbiz.de/10010229896
It is well known that standard tests for a mean shift are invalid in long-range dependent time series. Therefore, several long memory robust extensions of standard testing principles for a change-in-mean have been proposed in the literature. These can be divided into two groups: those that...
Persistent link: https://www.econbiz.de/10011667075
The research used a long memory or Autoregressive Fractionally Integrated Moving Average model to study and forecast crude oil prices using weekly West Texas Intermediate and Brent series for the period 15/5/1987 to 20/12/2013. Fractional differencing Methods such as Local Whittle Estimator and...
Persistent link: https://www.econbiz.de/10011460488
We introduce a new hybrid approach to joint estimation of Value at Risk (VaR) and Expected Shortfall (ES) for high quantiles of return distributions. We investigate the relative performance of VaR and ES models using daily returns for sixteen stock market indices (eight from developed and eight...
Persistent link: https://www.econbiz.de/10010265962
Recent models for credit risk management make use of Hidden Markov Models (HMMs). The HMMs are used to forecast quantiles of corporate default rates. Little research has been done on the quality of such forecasts if the underlying HMM is potentially mis-specified. In this paper, we focus on...
Persistent link: https://www.econbiz.de/10010325238
We propose new scoring rules based on partial likelihood for assessing the relative out-of-sample predictive accuracy of competing density forecasts over a specific region of interest, such as the left tail in financial risk management. By construction, existing scoring rules based on weighted...
Persistent link: https://www.econbiz.de/10010326053
This paper contains a forecasting exercise on 30 time series, ranging on several fields, from economy to ecology. The statistical approach to artificial neural networks modelling developed by the author is compared to linear modelling and to other three well-known neural network modelling...
Persistent link: https://www.econbiz.de/10010281250
The time series nature of repeated surveys is seldom taken into account. The few studies that take this into account usually smooth the period-wise estimates without using the cross sectional information. This leads to inefficient estimation. I present a statistical model of repeated surveys and...
Persistent link: https://www.econbiz.de/10010284336