Showing 1 - 10 of 35,120
The topic of this chapter is forecasting with nonlinear models. First, a number of well-known nonlinear models are introduced and their properties discussed. These include the smooth transition regression model, the switching regression model whose univariate counterpart is called threshold...
Persistent link: https://www.econbiz.de/10014023698
; extreme value theory ; bootstrapping …
Persistent link: https://www.econbiz.de/10003891679
In this study, we examine the forecastability of a specific neural network architecture called General Regression Neural Network (GRNN) and compare its performance with a variety of forecasting techniques, including Multi-Layered Feedforward Network (MLFN), multivariate transfer function, and...
Persistent link: https://www.econbiz.de/10014150550
Persistent link: https://www.econbiz.de/10014159095
The study adds an empirical outlook on the predicting power of using data from the future to predict future returns. The crux of the traditional Capital Asset Pricing Model (CAPM) methodology is using historical data in the calculation of the beta coefficient. This study instead uses a battery...
Persistent link: https://www.econbiz.de/10011526799
In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from...
Persistent link: https://www.econbiz.de/10013155198
The literature on exchange rate forecasting is vast. Many researchers have tested whether implications of theoretical economic models or the use of advanced econometric techniques can help explain future movements in exchange rates. The results of the empirical studies for major world currencies...
Persistent link: https://www.econbiz.de/10013008655
In recent years support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a moving...
Persistent link: https://www.econbiz.de/10003636113
In most of the empirical research on capital markets, stock market indexes are used as proxies for the aggregate market development. In previous work we found that a particular market segment might be less efficient than the whole market and hence easier to forecast. In this paper we extend the...
Persistent link: https://www.econbiz.de/10009696691
In recent years, support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a...
Persistent link: https://www.econbiz.de/10012966267