Showing 1 - 10 of 29,966
This paper introduces a test for zero correlation in situations where the correlation matrix is large compared to the sample size. The test statistic is the sum of the squared correlation coefficients in the sample. We derive its limiting null distribution as the number of variables as well as...
Persistent link: https://www.econbiz.de/10003483680
This paper proposes a novel regularisation method for the estimation of large covariance matrices, which makes use of insights from the multiple testing literature. The method tests the statistical significance of individual pair-wise correlations and sets to zero those elements that are not...
Persistent link: https://www.econbiz.de/10010361374
Persistent link: https://www.econbiz.de/10010366306
This paper proposes a regularisation method for the estimation of large covariance matrices that uses insights from the multiple testing (MT) literature. The approach tests the statistical significance of individual pair-wise correlations and sets to zero those elements that are not...
Persistent link: https://www.econbiz.de/10011405221
Persistent link: https://www.econbiz.de/10001532016
This paper proposes a novel regularisation method for the estimation of large covariance matrices, which makes use of insights from the multiple testing literature. The method tests the statistical significance of individual pair-wise correlations and sets to zero those elements that are not...
Persistent link: https://www.econbiz.de/10013051612
This paper proposes a novel regularisation method for the estimation of large covariance matrices, which makes use of insights from the multiple testing literature. The method tests the statistical significance of individual pair-wise correlations and sets to zero those elements that are not...
Persistent link: https://www.econbiz.de/10013053343
Persistent link: https://www.econbiz.de/10012546780
Persistent link: https://www.econbiz.de/10012439150
Persistent link: https://www.econbiz.de/10012145084