Showing 1 - 9 of 9
A semiparametric method is studied for estimating the dependence parameter and the joint distribution of the error term in a class of multivariate time series models when the marginal distributions of the errors are unknown. This method is a natural extension of Genest et al. (1995a) for...
Persistent link: https://www.econbiz.de/10005149050
This paper is concerned with developing a semiparametric panel model to explain the trend in UK temperatures and other weather outcomes over the last century. We work with the monthly averaged maximum and minimum temperatures observed at the twenty six Meteorological Office stations. The data is...
Persistent link: https://www.econbiz.de/10008725946
This paper is concerned with developing a semiparametric panel model to explain the trend in UK temperatures and other weather outcomes over the last century. We work with the monthly averaged maximum and minimum temperatures observed at the twenty six Meteorological Office stations. The data is...
Persistent link: https://www.econbiz.de/10008552815
This paper provides a root-n consistent, asymptotically normal weighted least squares estimator of the coefficients in a truncated regression model. The distribution of the errors is unknown and permits general forms of unknown heteroskedasticity. Also provided is an instrumental variables based...
Persistent link: https://www.econbiz.de/10005027859
The nonparametric censored regression model is y = max[c, m(x) + e], where both the regression function m(x) and the distribution of the error e are unknown, but the fixed censoring point c is known. This paper provides a simple consistent estimator of the derivative of m(x) with respect to each...
Persistent link: https://www.econbiz.de/10005593534
This paper studies efficient estimation of partial linear regression in time series models. In particular, it combines two topics that have attracted a good deal of attention in econometrics, viz. spectral regression and partial linear regression, and proposes an efficient frequency domain...
Persistent link: https://www.econbiz.de/10005593565
The nonparametric censored regression model, with a fixed, known censoring point (normalized to zero), is y = max[0,m(x) + e], where both the regression function m(x) and the distribution of the error e are unknown. This paper provides estimators of m(x) and its derivatives. The convergence rate...
Persistent link: https://www.econbiz.de/10010745070
We propose a multivariate generalization of the multiplicative volatility model ofEngle and Rangel (2008), which has a nonparametric long run component and aunit multivariate GARCH short run dynamic component. We suggest variouskernel-based estimation procedures for the parametric and...
Persistent link: https://www.econbiz.de/10008838734
This paper studies a general class of nonlinear varying coefficient time series models with possible nonstationarity in both the regressors and the varying coffiecient components. The model accommodates a cointegrating structure and allows for endogeneity with contemporaneous correlation among...
Persistent link: https://www.econbiz.de/10010895669