Showing 1 - 4 of 4
Persistent link: https://www.econbiz.de/10008497341
Likelihood based estimation of the parameters of state space models can be carried out via a particle filter.  In this paper we show how to make valid inference on such parameters when the model is incorrect.  In particular we develop a simulation strategy for computing sandwich covariance...
Persistent link: https://www.econbiz.de/10011004407
Dynamic models, also termed state space models, comprise an extremely rich model class for time series analysis. This dissertation focuses on building state space models for a variety of contexts and computationally efficient methods for Bayesian inference for simultaneous estimation of latent...
Persistent link: https://www.econbiz.de/10009475472
The modelling and analysis of complex stochastic systems with increasingly large data sets, state-spaces and parameters provides major stimulus to research in Bayesian nonparametric methods and Bayesian computation. This dissertation presents advances in both nonparametric modelling and...
Persistent link: https://www.econbiz.de/10009475521