Showing 1 - 10 of 1,094
This paper investigates the return-volatility relation by taking into account the model specification problem. The market volatility is modeled to have two components, one due to the diffusion risk and the other due to the jump risk. The model indicates that under the absence of leverage...
Persistent link: https://www.econbiz.de/10014211845
A Hidden Markov Model (HMM) is used to model the VIX (the Cboe Volatility Index). A 4- state Gaussian mixture is fitted to the VIX price history from 1990 to 2022. Using a growing window of training data, the price of the S&P500 is predicted and two trading algorithms are presented, based on the...
Persistent link: https://www.econbiz.de/10014356167
We demonstrate that the parameters controlling skewness and kurtosis in popular equity return models estimated at daily frequency can be obtained almost as precisely as if volatility is observable by simply incorporating the strong information content of realized volatility measures extracted...
Persistent link: https://www.econbiz.de/10013128339
Existing methods of partitioning the market index into bull and bear regimes do not identify market corrections or bear market rallies. In contrast, our probabilistic model of the return distribution allows for rich and heterogeneous intra-regime dynamics. We focus on the characteristics and...
Persistent link: https://www.econbiz.de/10013089748
We propose a new approach to imposing economic constraints on forecasts of the equity premium. Economic constraints are used to modify the posterior distribution of the parameters of the predictive return regression in a way that better allows the model to learn from the data. We consider two...
Persistent link: https://www.econbiz.de/10013064939
We develop a novel method to impose constraints on univariate predictive regressions of stock returns. Unlike the previous approaches in the literature, we implement our constraints directly on the predictor, setting it to zero whenever its value falls below the variable's past 12-month high....
Persistent link: https://www.econbiz.de/10012900845
Using well-known GARCH models for density prediction of daily S&P 500 and Nikkei 225 index returns, a comparison is provided between frequentist and Bayesian estimation. No significant difference is found between the qualities of the forecasts of the whole density, whereas the Bayesian approach...
Persistent link: https://www.econbiz.de/10012976219
COVID-19 pandemic is an extreme event that created a turmoil in stock markets around the world. This unexpected circumstance poses a critical question whether the prevailing models can help predict the plummets of indices, hence the returns. In this study, we model the stock returns using...
Persistent link: https://www.econbiz.de/10013236407
This paper investigates how investor sentiment affects stock market returns and evaluates the predictability power of sentiment indices on U.S. and EU stock market returns. As regards the American example, evidence shows that investor sentiment indices have an economic and statistical...
Persistent link: https://www.econbiz.de/10012022093
Particle Filter algorithms for filtering latent states (volatility and jumps) of Stochastic-Volatility Jump-Diffusion (SVJD) models are being explained. Three versions of the SIR particle filter with adapted proposal distributions to the jump occurrences, jump sizes, and both are derived and...
Persistent link: https://www.econbiz.de/10012118579