Showing 1 - 6 of 6
The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the underside of the absorber plate of a solar air heater duct. Under the present work, an experimental study has been carried out to investigate the effect of...
Persistent link: https://www.econbiz.de/10010808300
The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of a solar air heater. This paper presents a comparison of effective efficiency of solar air heaters having different types of geometry of roughness elements...
Persistent link: https://www.econbiz.de/10010810801
In the present work the performance of a solar air heater duct provided with artificial roughness in the form of thin circular wire in arc shaped geometry has been analysed using Computational Fluid Dynamics (CFD). The effect of arc shaped geometry on heat transfer coefficient, friction factor...
Persistent link: https://www.econbiz.de/10011044495
Artificial roughness in the form of repeated ribs is one of the effective way of improving the performance of a solar air heater ducts. Various studies have been carried out to determine the effect of different artificial roughness geometries on heat transfer and friction characteristics in...
Persistent link: https://www.econbiz.de/10011045925
This paper presents the results of an experimental investigation of heat transfer and friction in the flow of air in rectangular ducts having multi v-shaped rib with gap roughness on one broad wall. The investigation encompassed Reynolds number (Re) from 2000 to 20,000, relative gap distance...
Persistent link: https://www.econbiz.de/10011046070
The use of turbulators in different forms of ribs, baffles, delta winglets, obstacles, vortex generator, rings and perforated blocks/baffles is an effective way to improve the performance of heat exchangers and solar air heaters. Investigators studied the effect of these turbulators for heat...
Persistent link: https://www.econbiz.de/10011049411