Showing 1 - 10 of 13
We consider a convexity constrained Hamilton-Jacobi-Bellman-type obstacle problem for the value function of a zero-sum differential game with asymmetric information. We propose a convexity-preserving probabilistic numerical scheme for the approximation of the value function which is discrete...
Persistent link: https://www.econbiz.de/10012388847
This paper analyses two-player nonzero-sum games of optimal stopping on a class of regular diffusions with singular boundary behaviour (in the sense of Itô and McKean (1974) [19], p. 108). We prove that Nash equilibria are realised by stopping the diffusion at the first exit time from suitable...
Persistent link: https://www.econbiz.de/10011517464
In this paper we establish a new connection between a class of 2-player nonzerosum games of optimal stopping and certain 2-player nonzero-sum games of singular control. We show that whenever a Nash equilibrium in the game of stopping is attained by hitting times at two separate boundaries, then...
Persistent link: https://www.econbiz.de/10011517474
We provide an abstract framework for submodular mean field games and identify verifiable sufficient conditions that allow to prove existence and approximation of strong mean field equilibria in models where data may not be continuous with respect to the measure parameter and common noise is...
Persistent link: https://www.econbiz.de/10012803218
We study stationary mean field games with singular controls in which the representative player interacts with a long-time weighted average of the population through a discounted and an ergodic performance criterion. This class of games finds natural applications in the context of optimal...
Persistent link: https://www.econbiz.de/10012550284
Persistent link: https://www.econbiz.de/10012008539
We consider a class of N-player stochastic games of multi-dimensional singular control, in which each player faces a minimization problem of monotone-follower type with submodular costs. We call these games monotone-follower games. In a not necessarily Markovian setting, we establish the...
Persistent link: https://www.econbiz.de/10011952598
We study mean field games with scalar It^o-type dynamics and costs that are submodular with respect to a suitable order relation on the state and measure space. The submodularity assumption has a number of interesting consequences. Firstly, it allows us to prove existence of solutions via an...
Persistent link: https://www.econbiz.de/10012034390
This paper proposes a strategic model of pollution control. A firm, representative of the productive sector of a country, aims at maximizing its profits by expanding its production. Assuming that the output of production is proportional to the level of pollutants' emissions, the firm increases...
Persistent link: https://www.econbiz.de/10011891367
We consider a convexity constrained Hamilton-Jacobi-Bellman-type obstacle problem for the value function of a zero-sum differential game with asymmetric information. We propose a convexity-preserving probabilistic numerical scheme for the approximation of the value function which is discrete...
Persistent link: https://www.econbiz.de/10012150072