Showing 1 - 10 of 443
In economics, rank-size regressions provide popular estimators of tail exponents of heavy-tailed distributions. We discuss the properties of this approach when the tail of the distribution is regularly varying rather than strictly Pareto. The estimator then over-estimates the true value in the...
Persistent link: https://www.econbiz.de/10011823274
Health expenditure data almost always include extreme values, implying that the underlying distribution has heavy tails. This may result in infinite variances as well as higher-order moments and bias the commonly used least squares methods. To accommodate extreme values, we propose an estimation...
Persistent link: https://www.econbiz.de/10014424363
This paper provides a survey of three families of flexible parametric probability density functions (the skewed generalized t, the exponential generalized beta of the second kind, and the inverse hyperbolic sine distributions) which can be used in modeling a wide variety of econometric problems....
Persistent link: https://www.econbiz.de/10010295290
In this paper nonparametric instrumental variable estimation of local average treatment effects (LATE) is extended to incorporate confounding covariates. Estimation of local average treatment effects is appealing since their identification relies on much weaker assumptions than the...
Persistent link: https://www.econbiz.de/10010262665
Propensity score matching is widely used in treatment evaluation to estimate average treatment effects. Nevertheless, the role of the propensity score is still controversial. Since the propensity score is usually unknown and has to be estimated, the efficiency loss arising from not knowing the...
Persistent link: https://www.econbiz.de/10010262697
In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption...
Persistent link: https://www.econbiz.de/10003973622
There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10003953027
An intensive and still growing body of research focuses on estimating a portfolio’s Value-at-Risk.Depending on both the degree of non-linearity of the instruments comprised in the portfolio and thewillingness to make restrictive assumptions on the underlying statistical distributions, a...
Persistent link: https://www.econbiz.de/10011301159
Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high...
Persistent link: https://www.econbiz.de/10009412716
Complex phenomena in environmental sciences can be conveniently represented by several inter-dependent random variables. In order to describe such situations, copula-based models have been studied during the last year. In this paper, we consider a novel family of bivariate copulas, called...
Persistent link: https://www.econbiz.de/10010238359