Showing 1 - 10 of 21
Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10010324063
Persistent link: https://www.econbiz.de/10010324074
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind...
Persistent link: https://www.econbiz.de/10010324084
Nonparametric regression with long-range and antipersistent errors is considered. Local polynomial smoothing is investigated for the estimation of the trend function and its derivatives. It is well known that in the presence of long memory (with a fractional differencing parameter 0 d 1/2),...
Persistent link: https://www.econbiz.de/10010324088
This paper summarizes recent developments in non- and semiparametric regres- sion with stationary fractional time series errors, where the error process may be short-range, long-range dependent or antipersistent. The trend function in this model is estimated nonparametrically, while the...
Persistent link: https://www.econbiz.de/10010324094
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind...
Persistent link: https://www.econbiz.de/10010316534
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10010316616
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10009783567
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10011544323
This paper considers a class of semiparametric models being the sum of a non-parametric trend function g and a FARIMA-GARCH error process. Estimation of ĝ (v), the vth derivative of g, by local polynomial fitting is investigated. The focus is on the derivation of the asymptotic normality of ĝ...
Persistent link: https://www.econbiz.de/10011544427