Showing 1 - 10 of 3,381
Persistent link: https://www.econbiz.de/10015050636
Persistent link: https://www.econbiz.de/10010497148
Persistent link: https://www.econbiz.de/10009374481
In this paper, we consider three major types of nonparametric regression tests that are based on kernel and local polynomial smoothing techniques. Their asymptotic power comparisons are established systematically under the fixed and contiguous alternatives, and are also illustrated through...
Persistent link: https://www.econbiz.de/10010509837
Persistent link: https://www.econbiz.de/10011951432
Persistent link: https://www.econbiz.de/10011673784
Persistent link: https://www.econbiz.de/10009612415
Persistent link: https://www.econbiz.de/10013534533
Persistent link: https://www.econbiz.de/10011326817
We develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse least absolute deviation/median regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s << n of them are needed to accurately describe the regression function. Our new methods are based on the instrumental median regression estimator that assembles the optimal estimating equation from the output of the post l1-penalized median regression and post l1-penalized least squares in an auxiliary equation. The estimating equation is immunized against non-regular estimation of nuisance part of the median regression function, in the sense of Neyman. We establish that in a homoscedastic regression model, the instrumental median regression estimator of a single regression coefficient is asymptotically root-n normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly with respect to the underlying model. We illustrate the value of uniformity with Monte-Carlo experiments which demonstrate that standard/naive post-selection inference breaks down over large parts of the parameter space, and the proposed method does not. We then generalize our method to the case where p1 > n regression coefficients...</<>
Persistent link: https://www.econbiz.de/10010227487