Showing 1 - 10 of 74
Persistent link: https://www.econbiz.de/10009723022
We consider likelihood inference and state estimation by means of importance sampling for state space models with a nonlinear non-Gaussian observation y ~ p(y|alpha) and a linear Gaussian state alpha ~ p(alpha). The importance density is chosen to be the Laplace approximation of the smoothing...
Persistent link: https://www.econbiz.de/10014060268
Persistent link: https://www.econbiz.de/10003833957
Persistent link: https://www.econbiz.de/10003355799
Persistent link: https://www.econbiz.de/10003248123
In this paper we aim to measure actual volatility within a model-based framework using high-frequency data. In the empirical finance literature it is known that tick-by-tick prices are subject to market micro-structure such as bid-ask bounces and trade information. Such market micro-structure...
Persistent link: https://www.econbiz.de/10011342558
We consider likelihood inference and state estimation by means of importance sampling for state space models with a nonlinear non-Gaussian observation y ~ p(y lpha) and a linear Gaussian state alpha ~ p(alpha). The importance density is chosen to be the Laplace approximation of the smoothing...
Persistent link: https://www.econbiz.de/10011348357
Persistent link: https://www.econbiz.de/10015365824
We consider unobserved components time series models where the components are stochastically evolving over time and are subject to stochastic volatility. It enables the disentanglement of dynamic structures in both the mean and the variance of the observed time series. We develop a simulated...
Persistent link: https://www.econbiz.de/10012924242
Persistent link: https://www.econbiz.de/10011389921