Showing 1 - 10 of 213
Exchange rates typically exhibit time-varying patterns in both means andvariances. The histograms of such series indicate heavy tails. In thispaper we construct models which enable a decision-maker to analyze theimplications of such time series patterns for currency risk management.Our approach...
Persistent link: https://www.econbiz.de/10011302131
It has become popular recently to apply the multifractal formalism of statistical physics (scaling analysis of structure functions and f(a) singularity spectrum analysis) to financial data. The outcome of such studies is a nonlinear shape of the structure function and a nontrivial behavior of...
Persistent link: https://www.econbiz.de/10010295150
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity....
Persistent link: https://www.econbiz.de/10010295743
Understanding adjustment processes has become central in economics. Empirical analysis is fraught with the problem that the target is usually unobserved. This paper develops, simulates and applies GMM methods for estimating dynamic adjustment models in a panel data context with partially...
Persistent link: https://www.econbiz.de/10010295881
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10010296235
Persistent link: https://www.econbiz.de/10011422158
This study presents the results of an extensive Monte Carlo experiment to compare different methods of efficiency analysis. In addition to traditional parametric-stochastic and nonparametric-deterministic methods recently developed robust nonparametric-stochastic methods are considered. The...
Persistent link: https://www.econbiz.de/10010323742
The linear Gaussian state space model for which the common variance istreated as a stochastic time-varying variable is considered for themodelling of economic time series. The focus of this paper is on thesimultaneous estimation of parameters related to the stochasticprocesses of the mean part...
Persistent link: https://www.econbiz.de/10010324992
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic...
Persistent link: https://www.econbiz.de/10010325333
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that...
Persistent link: https://www.econbiz.de/10010325813