Showing 1 - 10 of 4,685
In this paper we solve the discrete time mean-variance hedging problem when asset returns follow a multivariate autoregressive hidden Markov model. Time dependent volatility and serial dependence are well established properties of financial time series and our model covers both. To illustrate...
Persistent link: https://www.econbiz.de/10012953054
Markov chain Monte Carlo (MCMC) methods have an important role in solving high dimensionality stochastic problems characterized by computational complexity. Given their critical importance, there is need for network and security risk management research to relate the MCMC quantitative...
Persistent link: https://www.econbiz.de/10013029835
We introduce a new method to price American-style options on underlying investments governed by stochastic volatility (SV) models. The method does not require the volatility process to be observed. Instead, it exploits the fact that the optimal decision functions in the corresponding dynamic...
Persistent link: https://www.econbiz.de/10013078765
Econometric estimation using simulation techniques, such as the efficient method of moments, may betime consuming. The use of ordinary matrix programming languages such as Gauss, Matlab, Ox or S-plus will very often cause extra delay. For the Efficient Method of Moments implemented to...
Persistent link: https://www.econbiz.de/10010533201
We define a non-parametric estimator of the integrated leverage effect as the covariance between the logarithmic asset price and its volatility. In Curato and Sanfelici (2015), a consistent estimator of the leverage effect has been introduced through a pre-estimate of the Fourier coefficients of...
Persistent link: https://www.econbiz.de/10012937229
A bivariate normal distribution, with the attendant non-analytically integrable p.d.f., lies at the hearts of many financial theories. Its derived Gaussian copula ostensibly does away with the normality assumptions, only to retain the linear (Pearson's) correlation measure implicit to said...
Persistent link: https://www.econbiz.de/10013009170
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that...
Persistent link: https://www.econbiz.de/10011386179
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that...
Persistent link: https://www.econbiz.de/10013115029
In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap proach which is easily implemented in empirical...
Persistent link: https://www.econbiz.de/10003770817
A large number of nonlinear conditional heteroskedastic models have been proposed in the literature. Model selection is crucial to any statistical data analysis. In this article, we investigate whether the most commonly used selection criteria lead to choice of the right specification in a...
Persistent link: https://www.econbiz.de/10011297653