Showing 1 - 10 of 10,117
When analysing the volatility related to high frequency financial data, mostly non-parametric approaches based on realised or bipower variation are applied. This article instead starts from a continuous time diffusion model and derives a parametric analog at high frequency for it, allowing...
Persistent link: https://www.econbiz.de/10011374428
This paper presents a method for Bayesian nonparametric analysis of the return distribution in a stochastic volatility model. The distribution of the logarithm of the squared return is flexibly modelled using an infinite mixture of Normal distributions. This allows efficient Markov chain Monte...
Persistent link: https://www.econbiz.de/10013133054
In this paper, we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10009534187
In this paper, we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10013066096
This paper extends the Bayesian semiparametric stochastic volatility (SV-DPM) model of Jensen and Maheu (2010). Instead of using a Dirichlet process mixture (DPM) to model return innovations, we use an infinite hidden Markov model (IHMM). This allows for time variation in the return density...
Persistent link: https://www.econbiz.de/10013295177
We propose a moving average stochastic volatility in mean model and a moving average stochastic volatility model with leverage. For parameter estimation, we develop efficient Markov chain Monte Carlo algorithms and illustrate our methods, using simulated data and a real data set. We compare the...
Persistent link: https://www.econbiz.de/10012956581
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10013005987
The deviance information criterion (DIC) has been widely used for Bayesian model comparison. In particular, a popular metric for comparing stochastic volatility models is the DIC based on the conditional likelihood — obtained by conditioning on the latent variables. However, some recent...
Persistent link: https://www.econbiz.de/10013051070
Persistent link: https://www.econbiz.de/10010191411
This article shows how asset characteristics can be incorporated into the Bayesian portfolio selection framework. We use Gaussian process priors to model the belief that assets with similar characteristics are likely to have similar expected returns. The resulting Bayesian shrinkage estimator...
Persistent link: https://www.econbiz.de/10012915302