Showing 1 - 10 of 1,487
We introduce an ensemble learning method based on Gaussian Process Regression (GPR) for predicting conditional expected stock returns given stock-level and macro-economic information. Our ensemble learning approach significantly reduces the computational complexity inherent in GPR inference and...
Persistent link: https://www.econbiz.de/10014236083
In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to a spatial autoregressive model that has a spatial moving average process in the disturbance term (for short SARMA (1,1)). First, we...
Persistent link: https://www.econbiz.de/10012974451
In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and...
Persistent link: https://www.econbiz.de/10014145971
This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most...
Persistent link: https://www.econbiz.de/10011524214
This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most...
Persistent link: https://www.econbiz.de/10011823308
In this paper we consider regression models with forecast feedback. Agents' expectations are formed via the recursive estimation of the parameters in an auxiliary model. The learning scheme employed by the agents belongs to the class of stochastic approximation algorithms whose gain sequence is...
Persistent link: https://www.econbiz.de/10011381034
In this paper we consider regression models with forecast feedback. Agents' expectations are formed via the recursive estimation of the parameters in an auxiliary model. The learning scheme employed by the agents belongs to the class of stochastic approximation algorithms whose gain sequence is...
Persistent link: https://www.econbiz.de/10013139606
When a pair of independent series are highly persistent, there is a spurious regression bias in a regression between these series, closely related to the classic studies of Granger and Newbold [1974]. Although this is well known to occur with independent I(1) processes, this paper provides...
Persistent link: https://www.econbiz.de/10012906052
Strong consistency of least squares estimators of the slope parameter in simple linear regression models is established for predetermined stochastic regressors. The main result covers a class of models which falls outside the applicability of what is presently available in the literature. An...
Persistent link: https://www.econbiz.de/10013036394
In this paper, we provide evidence that fat tails and stochastic volatility can be important in improving in-sample fit and out-of-sample forecasting performance. Specifically, we construct a VAR model where the orthogonalised shocks feature Student's t distribution and time-varying variance. We...
Persistent link: https://www.econbiz.de/10013021982