Showing 1 - 10 of 356
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable. As the...
Persistent link: https://www.econbiz.de/10010333949
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable. As the...
Persistent link: https://www.econbiz.de/10010427542
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable. As the...
Persistent link: https://www.econbiz.de/10003848865
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable. As the...
Persistent link: https://www.econbiz.de/10003951715
We study a continuous-time game of strategic experimentation in which the players try to assess the failure rate of some new equipment or technology. Breakdowns occur at the jump times of a Poisson process whose unknown intensity is either high or low. In marked contrast to existing models, we...
Persistent link: https://www.econbiz.de/10009685864
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable and show...
Persistent link: https://www.econbiz.de/10013140133
We study a game of strategic experimentation with two-armed bandits where the risky arm distributes lump-sum payoffs according to a Poisson process. Its intensity is either high or low, and unknown to the players. We consider Markov perfect equilibria with beliefs as the state variable. As the...
Persistent link: https://www.econbiz.de/10012715236
This paper analyzes the case of a principal who wants to provide an agent with proper incentives to explore a hypothesis that can be either true or false. The agent can shirk, thus never proving the hypothesis, or he can avail himself of a known technology to produce fake successes. This latter...
Persistent link: https://www.econbiz.de/10011671897
We study a continuous-time game of strategic experimentation in which the players try to assess the failure rate of some new equipment or technology. Breakdowns occur at the jump times of a Poisson process whose unknown intensity is either high or low. In marked contrast to existing models, we...
Persistent link: https://www.econbiz.de/10011673990
Rare and randomly occurring events are important features of the economic world. In continuous time they can easily be modeled by Poisson processes. Analyzing optimal behavior in such a setup requires the appropriate version of the change of variables formula and the Hamilton-Jacobi-Bellman...
Persistent link: https://www.econbiz.de/10010296536