Showing 1 - 10 of 13
We consider optimal stopping problems for ambiguity averse decision makers with multiple priors. In general, backward induction fails. If, however, the class of priors is time-consistent, we establish a generalization of the classical theory of optimal stopping. To this end, we develop first...
Persistent link: https://www.econbiz.de/10003731193
We develop a theory of optimal stopping problems under ambiguity in continuous time. Using results from (backward) stochastic calculus, we characterize the value function as the smallest (nonlinear) supermartingale dominating the payoff process. For Markovian models, we derive an adjusted...
Persistent link: https://www.econbiz.de/10003964862
We develop a theory of optimal stopping problems under ambiguity in continuous time. Using results from (backward) stochastic calculus, we characterize the value function as the smallest (nonlinear) supermartingale dominating the payoff process. For Markovian models, we derive an adjusted...
Persistent link: https://www.econbiz.de/10010272549
We model and solve Best Choice Problems in the multiple prior framework: An ambiguity averse decision maker aims to choose the best among a fixed number of applicants that appear sequentially in a random order. The decision faces ambiguity about the probability that a candidate - a relatively...
Persistent link: https://www.econbiz.de/10010272556
We consider optimal stopping problems for ambiguity averse decision makers with multiple priors. In general, backward induction fails. If, however, the class of priors is time-consistent, we establish a generalization of the classical theory of optimal stopping. To this end, we develop first...
Persistent link: https://www.econbiz.de/10010272620
In this paper we study a continuous time, optimal stochastic investment problem under limited resources in a market with N firms. The investment processes are subject to a time-dependent stochastic constraint. Rather than using a dynamic programming approach, we exploit the concavity of the...
Persistent link: https://www.econbiz.de/10010319990
Persistent link: https://www.econbiz.de/10003866998
We model and solve Best Choice Problems in the multiple prior framework: An ambiguity averse decision maker aims to choose the best among a fixed number of applicants that appear sequentially in a random order. The decision faces ambiguity about the probability that a candidate - a relatively...
Persistent link: https://www.econbiz.de/10003818230
In this paper we study a continuous time, optimal stochastic investment problem under limited resources in a market with N firms. The investment processes are subject to a time-dependent stochastic constraint. Rather than using a dynamic programming approach, we exploit the concavity of the...
Persistent link: https://www.econbiz.de/10009511650
Persistent link: https://www.econbiz.de/10009708979