Showing 1 - 10 of 16,808
In recent years support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a moving...
Persistent link: https://www.econbiz.de/10003636113
In recent years, support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a...
Persistent link: https://www.econbiz.de/10012966267
In recent years support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a moving...
Persistent link: https://www.econbiz.de/10010274143
This paper proposes a novel theory, coined as Topological Tail Dependence Theory, that links the mathematical theory behind Persistent Homology (PH) and the financial stock market theory. This study also proposes a novel algorithm to measure topological stock market changes as well as the...
Persistent link: https://www.econbiz.de/10014514075
This paper proposes a novel algorithm called Persistent Homology for Realized Volatility (PH-RV), which aims to effectively incorporate persistent homology (PH) into neural network models to increase their forecast accuracy in predicting realized volatility (RV). This paper also proposes a novel...
Persistent link: https://www.econbiz.de/10014354048
Forecasting plays an essential role in energy economics. With new challenges and use cases in the energy system, forecasts have to meet more complex requirements, such as increasing temporal and spatial resolution of data. The concept of machine learning can meet these requirements by providing...
Persistent link: https://www.econbiz.de/10012649104
We produce a social unrest risk index for 125 countries covering a period of 1996 to 2020. The risk of social unrest is based on the probability of unrest in the following year derived from a machine learning model drawing on over 340 indicators covering a wide range of macro-financial,...
Persistent link: https://www.econbiz.de/10013306728
In recent years, support vector regressions (SVRs), a novel artificial neural network (ANN) technique, has been successfully used as a nonparametric tool for regression estimation and forecasting time series data. In this thesis, we deal with the application of SVRs in financial markets...
Persistent link: https://www.econbiz.de/10013100878
Echo State Neural Networks (ESN) were applied to forecast the realized variance time series of 19 major stock market indices. Symmetric ESN and asymmetric AESN models were constructed and compared with the benchmark realized variance models HAR and AHAR that approximate the long memory of the...
Persistent link: https://www.econbiz.de/10011818288
Patton and Timmermann (2011, 'Forecast Rationality Tests Based on Multi-Horizon Bounds', Journal of Business & Economic Statistics, forthcoming) propose a set of useful tests for forecast rationality or optimality under squared error loss, including an easily implemented test based on a...
Persistent link: https://www.econbiz.de/10013120348