Showing 1 - 10 of 264
We characterize the dynamic properties of Generalized Autoregressive Score (GAS) processes by identifying regions of the parameter space that imply stationarity and ergodicity. We show how these regions are affected by the choice of parameterization and scaling, which are key features of GAS...
Persistent link: https://www.econbiz.de/10010326396
We characterize the dynamic properties of Generalized Autoregressive Score (GAS) processes by identifying regions of the parameter space that imply stationarity and ergodicity. We show how these regions are affected by the choice of parameterization and scaling, which are key features of GAS...
Persistent link: https://www.econbiz.de/10013065930
We introduce a new model for time-varying spatial dependence. The model extends the well-known static spatial lag model. All parameters can be estimated conveniently by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimator for the...
Persistent link: https://www.econbiz.de/10013049149
We develop optimal formulations for nonlinear autoregressive models by representing them as linear autoregressive models with time-varying temporal dependence coefficients. We propose a parameter updating scheme based on the score of the predictive likelihood function at each time point. The...
Persistent link: https://www.econbiz.de/10013049359
We propose a new Markov switching model with time varying probabilities for the transitions. The novelty of our model is that the transition probabilities evolve over time by means of an observation driven model. The innovation of the time varying probability is generated by the score of the...
Persistent link: https://www.econbiz.de/10013052225
We study the performance of alternative methods for calculating in-sample confidence and out of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter uncertainty only. The out-of-sample bands reflect both parameter uncertainty and innovation uncertainty. The...
Persistent link: https://www.econbiz.de/10013019586
We study the performance of two analytical methods and one simulation method for computing in-sample confidence bounds for time-varying parameters. These in-sample bounds are designed to reflect parameter uncertainty in the associated filter. They are applicable to the complete class of...
Persistent link: https://www.econbiz.de/10013027676
We describe stationarity and ergodicity (SE) regions for a recently proposed class of score driven dynamic correlation models. These models have important applications in empirical work. The regions are derived from sufficiency conditions in Bougerol (1993) and take a non-standard form. We show...
Persistent link: https://www.econbiz.de/10010326270
We study optimality properties in finite samples for time-varying volatility models driven by the score of the predictive likelihood function. Available optimality results for this class of models suffer from two drawbacks. First, they are only asymptotically valid when evaluated at the...
Persistent link: https://www.econbiz.de/10012942866
We introduce the new F-Riesz distribution to model tail-heterogeneity in fat-tailed covariance matrix observations. In contrast to the typical matrix-valued distributions from the econometric literature, the F-Riesz distribution allows for different tail behavior across all variables in the...
Persistent link: https://www.econbiz.de/10013240359