Showing 1 - 4 of 4
Stips et al. (2016) use information flows (Liang (2008, 2014)) to establish causality from various forcings to global temperature. We show that the formulas being used hinge on a simplifying assumption that is nearly always rejected by the data. We propose the well-known forecast error variance...
Persistent link: https://www.econbiz.de/10012617291
When it comes to stock returns, any form of predictability can bolster risk-adjusted profitability. We develop a collaborative machine learning algorithm that optimizes portfolio weights so that the resulting synthetic security is maximally predictable. Precisely, we introduce MACE, a...
Persistent link: https://www.econbiz.de/10014348906
Persistent link: https://www.econbiz.de/10014517490
We develop metrics based on Shapley values for interpreting time-series forecasting models, including "black-box" models from machine learning. Our metrics are model agnostic, so that they are applicable to any model (linear or nonlinear, parametric or nonparametric). Two of the metrics,...
Persistent link: https://www.econbiz.de/10013429204