Showing 1 - 10 of 13
In this paper, I construct a new test of conditional moment inequalities based on studentized kernel estimates of moment functions. The test automatically adapts to the unknown smoothness of the moment functions, has uniformly correct asymptotic size, and is rate optimal against certain classes...
Persistent link: https://www.econbiz.de/10009667986
We derive a Gaussian approximation result for the maximum of a sum of high dimensional random vectors. Specifically, we establish conditions under which the distribution of the maximum is approximated by that of the maximum of a sum of the Gaussian random vectors with the same covariance...
Persistent link: https://www.econbiz.de/10010227470
We develop a new direct approach to approximating suprema of general empirical processes by a sequence of suprema of Gaussian processes, without taking the route of approximating whole empirical processes in the supremum norm. We prove an abstract approximation theorem that is applicable to a...
Persistent link: https://www.econbiz.de/10010227479
In this work we consider series estimators for the conditional mean in light of three new ingredients: (i) sharp LLNs for matrices derived from the non-commutative Khinchin inequalities, (ii) bounds on the Lebesgue factor that controls the ratio between the L8 and L2-norms, and (iii) maximal...
Persistent link: https://www.econbiz.de/10010227484
Slepian and Sudakov-Fernique type inequalities, which com- pare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in probability theory, especially in empirical process and extreme value theories. Here we give explicit...
Persistent link: https://www.econbiz.de/10010227495
We derive strong approximations to the supremum of the non-centered empirical process indexed by a possibly unbounded VC-type class of functions by the suprema of the Gaussian and bootstrap processes. The bounds of these approximations are non-asymptotic, which allows us to work with classes of...
Persistent link: https://www.econbiz.de/10011524717
In this paper, we derive central limit and bootstrap theorems for probabilities that centered high-dimensional vector sums hit rectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for the probabilities that a root-n rescaled sample average of Xi is...
Persistent link: https://www.econbiz.de/10011525777
Slepian and Sudakov-Fernique type inequalities, which compare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in probability theory, especially in empirical process and extreme value theories. Here we give explicit...
Persistent link: https://www.econbiz.de/10011525793
Most modern supervised statistical/machine learning (ML) methods are explicitly designed to solve prediction problems very well. Achieving this goal does not imply that these methods automatically deliver good estimators of causal parameters. Examples of such parameters include individual...
Persistent link: https://www.econbiz.de/10011538313
In this paper, we derive central limit and bootstrap theorems for probabilities that centered high-dimensional vector sums hit rectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for the probabilities that a root-n rescaled sample average of Xi is...
Persistent link: https://www.econbiz.de/10010459841