Showing 1 - 10 of 1,036
This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of...
Persistent link: https://www.econbiz.de/10003633940
Die Prognose der Insolvenzgefährdung von Unternehmen anhand statistischer Methodik war und ist eine bedeutende Aufgabe empirischer Forschung. Eine Möglichkeit der Beurteilung der finanziellen bzw. wirtschaftlichen Verfassung von Unternehmen stellt die sog. externe Bilanzanalyse anhand...
Persistent link: https://www.econbiz.de/10003634014
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth...
Persistent link: https://www.econbiz.de/10003636001
Graphical data representation is an important tool for model selection in bankruptcy analysis since the problem is highly non-linear and its numerical representation is much less transparent. In classical rating models a convenient representation of ratings in a closed form is possible reducing...
Persistent link: https://www.econbiz.de/10003324316
Predicting default probabilities is at the core of credit risk management and is becoming more and more important for banks in order to measure their client's degree of risk, and for firms to operate successfully. The SVM with evolutionary feature selection is applied to the CreditReform...
Persistent link: https://www.econbiz.de/10009526609
This paper introduces a statistical technique, Support Vector Machines (SVM), which is considered by the Deutsche Bundesbank as an alternative for company rating. A special attention is paid to the features of the SVM which provide a higher accuracy of company classification into solvent and...
Persistent link: https://www.econbiz.de/10003746664
Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to...
Persistent link: https://www.econbiz.de/10003402291
Credit risk rating is a very important issue for both banks and companies, especially in periods of economic recession. There are many different approaches and methods which have been developed over the years. The aim of this paper is to create a credit risk rating model combining the...
Persistent link: https://www.econbiz.de/10013099959
This paper introduces a statistical technique, Support Vector Machines (SVM), which is considered by the Deutsche Bundesbank as an alternative for company rating. A special attention is paid to the features of the SVM which provide a higher accuracy of company classification into solvent and...
Persistent link: https://www.econbiz.de/10013158612
Monitoring and assessing systemic risk in financial markets is of great importance but it often requires data that are unavailable or available at a very low frequency. For this reason, systemic risk assessment with partial information is potentially very useful for regulators and other...
Persistent link: https://www.econbiz.de/10012937089