Showing 1 - 10 of 398
This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are cross-sectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that...
Persistent link: https://www.econbiz.de/10009570680
This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are crosssectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that...
Persistent link: https://www.econbiz.de/10009545313
Persistent link: https://www.econbiz.de/10003741143
Persistent link: https://www.econbiz.de/10003604648
Persistent link: https://www.econbiz.de/10009764422
This paper proposes a novel regularisation method for the estimation of large covariance matrices, which makes use of insights from the multiple testing literature. The method tests the statistical significance of individual pair-wise correlations and sets to zero those elements that are not...
Persistent link: https://www.econbiz.de/10010361374
Persistent link: https://www.econbiz.de/10003630712
This paper proposes a regularisation method for the estimation of large covariance matrices that uses insights from the multiple testing (MT) literature. The approach tests the statistical significance of individual pair-wise correlations and sets to zero those elements that are not...
Persistent link: https://www.econbiz.de/10011405221
This paper extends the cross sectionally augmented panel unit root test proposed by Pesaran (2007) to the case of a multifactor error structure. The basic idea is to exploit information regarding the unobserved factors that are shared by other time series in addition to the variable under...
Persistent link: https://www.econbiz.de/10003652679
This paper proposes a novel regularisation method for the estimation of large covariance matrices, which makes use of insights from the multiple testing literature. The method tests the statistical significance of individual pair-wise correlations and sets to zero those elements that are not...
Persistent link: https://www.econbiz.de/10013051612