Showing 1 - 10 of 716,147
The paper contributes to the rare literature modeling term structure of crude oil markets. We explain term structure of crude oil prices using dynamic Nelson-Siegel model, and propose to forecast them with the generalized regression framework based on neural networks. The newly proposed...
Persistent link: https://www.econbiz.de/10011378719
We study the out-of-sample predictability of the real price of crude oil using forecast combinations constructed from several individual predictors. We find that forecasts of themonthly average price of oil are more accurate than the no-change forecast at horizons ranging from 1 to 24 months...
Persistent link: https://www.econbiz.de/10013302008
We examine the impact of temporal and portfolio aggregation on the quality of Value-at-Risk (VaR) forecasts over a horizon of ten trading days for a well-diversified portfolio of stocks, bonds and alternative investments. The VaR forecasts are constructed based on daily, weekly or biweekly...
Persistent link: https://www.econbiz.de/10012970357
In order to provide reliable Value-at-Risk (VaR) and Expected Shortfall (ES) forecasts, this paper attempts to investigate whether an inter-day or an intra-day model provides accurate predictions. We investigate the performance of inter-day and intra-day volatility models by estimating the...
Persistent link: https://www.econbiz.de/10012910113
We develop a LSTM neural network for the joint prediction of volatility, realized volatility and Value-at-Risk. Regularization by means of pooling the dynamic structure for the different outputs of the models is shown to be a powerful method for improving forecasts and smoothing VaR estimates....
Persistent link: https://www.econbiz.de/10013220893
Beyond their importance from the regulatory policy point of view, Value-at-Risk (VaR) and Expected Shortfall (ES) play an important role in risk management, portfolio allocation, capital level requirements, trading systems, and hedging strategies. Unfortunately, due to the curse of...
Persistent link: https://www.econbiz.de/10013242339
Recent literature has focuses on realized volatility models to predict financial risk. This paper studies the benefit of explicitly modeling jumps in this class of models for value at risk (VaR) prediction. Several popular realized volatility models are compared in terms of their VaR forecasting...
Persistent link: https://www.econbiz.de/10013105658
We examine the impact of temporal and portfolio aggregation on the quality of Value-at-Risk (VaR) forecasts over a horizon of ten trading days for a well-diversified portfolio of stocks, bonds and alternative investments. The VaR forecasts are constructed based on daily, weekly or biweekly...
Persistent link: https://www.econbiz.de/10011431503
This paper examines the time-varying dependence structure of commodity futures portfolios based on multivariate dynamic copula models. The importance of accounting for time-variation is emphasized in the context of the Basel traffic light system. We enhance the exibility of this structure by...
Persistent link: https://www.econbiz.de/10011344180
To simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural changes, we introduce a time-varying parameter mixed-frequency VAR. To keep our approach from becoming too complex, we implement time variation parsimoniously: only the intercepts and a common...
Persistent link: https://www.econbiz.de/10011903709