Showing 1 - 10 of 58
This paper considers quasi-maximum likelihood estimations of a dynamic approximate factor model when the panel of time series is large. Maximum likelihood is analyzed under different sources of misspecification: omitted serial correlation of the observations and cross-sectional correlation of...
Persistent link: https://www.econbiz.de/10003367539
Persistent link: https://www.econbiz.de/10003353030
This paper considers Bayesian regression with normal and doubleexponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range...
Persistent link: https://www.econbiz.de/10003397990
This paper considers Bayesian regression with normal and doubleexponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range...
Persistent link: https://www.econbiz.de/10003380561
Persistent link: https://www.econbiz.de/10003381781
Persistent link: https://www.econbiz.de/10003413769
The authors replicate and extend the Monte Carlo experiment presented in Doz, Giannone and Reichlin (A Quasi-Maximum Likelihood Approach For Large, Approximate Dynamic Factor Models, Review of Economics and Statistics, 2012) on alternative (time-domain based) methods for extracting dynamic...
Persistent link: https://www.econbiz.de/10012221951
The authors replicate and extend the Monte Carlo experiment presented in Doz et al. (2012) on alternative (time-domain based) methods for extracting dynamic factors from large datasets; they employ open source software and consider a larger number of replications and a wider set of scenarios....
Persistent link: https://www.econbiz.de/10012173815
This paper considers Bayesian regression with normal and double-exponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range...
Persistent link: https://www.econbiz.de/10013317338
This paper considers quasi-maximum likelihood estimations of a dynamic approximate factor model when the panel of time series is large. Maximum likelihood is analyzed under different sources of misspecification: omitted serial correlation of the observations and cross-sectional correlation of...
Persistent link: https://www.econbiz.de/10013317480