Showing 1 - 10 of 14,825
Over the last decade, big data have poured into econometrics, demanding new statistical methods for analysing high-dimensional data and complex non-linear relationships. A common approach for addressing dimensionality issues relies on the use of static graphical structures for extracting the...
Persistent link: https://www.econbiz.de/10012868987
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced...
Persistent link: https://www.econbiz.de/10012405305
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced...
Persistent link: https://www.econbiz.de/10012501159
We consider forecast combination and, indirectly, model selection for VAR models when there is uncertainty about which variables to include in the model in addition to the forecast variables. The key difference from traditional Bayesian variable selection is that we also allow for uncertainty...
Persistent link: https://www.econbiz.de/10014221496
We consider forecast combination and, indirectly, model selection for VAR models when there is uncertainty about which variables to include in the model in addition to the forecast variables. The key difference from traditional Bayesian variable selection is that we also allow for uncertainty...
Persistent link: https://www.econbiz.de/10003581516
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010412361
BayVAR_R is an R package designed to estimate and analyze Vec-tor Autoregressive (VAR) models from both a classical (UVAR) andBayesian (BVAR) perspective. The package includes functionalities forthe speci cation, estimation and diagnosis of such a models. It alsoprovides procedures for...
Persistent link: https://www.econbiz.de/10013309434
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced...
Persistent link: https://www.econbiz.de/10013243790
Time-varying parameter VARs with stochastic volatility are routinely used for structural analysis and forecasting in settings involving a few macroeconomic variables. Applying these models to high-dimensional datasets has proved to be challenging due to intensive computations and...
Persistent link: https://www.econbiz.de/10012861228
Large Bayesian VARs with stochastic volatility are increasingly used in empirical macroeconomics. The key to make these highly parameterized VARs useful is the use of shrinkage priors. We develop a family of priors that captures the best features of two prominent classes of shrinkage priors:...
Persistent link: https://www.econbiz.de/10012864330