Showing 1 - 10 of 1,437
We use European and simulated Hungarian data to search for the univariate one-sided credit-to-GDP gap that predicts systemic banking crises most accurately. The credit-to-GDP gaps under review are optimized along four dimensions: (1) definition of outstanding credit, (2) forecasting method for...
Persistent link: https://www.econbiz.de/10012815620
This paper introduces structured machine learning regressions for high-dimensional time series data potentially sampled at different frequencies. The sparse-group LASSO estimator can take advantage of such time series data structures and outperforms the unstructured LASSO. We establish oracle...
Persistent link: https://www.econbiz.de/10013238628
This study extends previous work applying unsupervised machine learning to commodity markets. "Clustering Commodity Markets in Space and Time" [DOI: 10.1016/j.resourpol.2021.102162] examined returns and volatility in commodity markets. That paper supported the conventional ontology of commodity...
Persistent link: https://www.econbiz.de/10014356740
TThe rapid development of machine learning (ML) provides new tools for predicting financial-economic time series. However, this paper argues that, from the perspective of time series, ML prediction is merely a one-step static forecasting, which is usually good but of limited use. This study...
Persistent link: https://www.econbiz.de/10012846465
This paper extends the machine learning methods developed in Han et al. (2019) for forecasting cross-sectional stock returns to a time-series context. The methods use the elastic net to refine the simple combination return forecast from Rapach et al. (2010). In a time-series application focused...
Persistent link: https://www.econbiz.de/10012865775
We employ forty-seven different algorithms to forecast Australian log real house prices and growth rates, and compare their ability to produce accurate out-of-sample predictions. The algorithms, which are specified in both single- and multi-equation frameworks, consist of traditional time-series...
Persistent link: https://www.econbiz.de/10012866930
Instead of relying solely on data of a single time series it is possible to use information of parallel, similar time series to improve prediction quality. Our data set consists of microeconomic data of daily store deposits from a large number of different stores. We analyze how prediction...
Persistent link: https://www.econbiz.de/10012838913
Forecasting plays an essential role in energy economics. With new challenges and use cases in the energy system, forecasts have to meet more complex requirements, such as increasing temporal and spatial resolution of data. The concept of machine learning can meet these requirements by providing...
Persistent link: https://www.econbiz.de/10012649104
Today's Internet marketing ecosystems are very complex, with many competing players, transactions concluded within milliseconds, and hundreds of different parameters to be analyzed in the decision-making process. In addition, both sellers and buyers operate under uncertainty, without full...
Persistent link: https://www.econbiz.de/10012490328
This paper proposes a new combined semiparametric estimator of the conditional variance that takes the product of a parametric estimator and a nonparametric estimator based on machine learning. A popular kernel-based machine learning algorithm, known as the kernel-regularized least squares...
Persistent link: https://www.econbiz.de/10012814196