Showing 1 - 10 of 172
Persistent link: https://www.econbiz.de/10011457719
Persistent link: https://www.econbiz.de/10011507441
Persistent link: https://www.econbiz.de/10010425541
We use machine learning methods to predict stock return volatility. Our out-of-sample prediction of realised volatility for a large cross-section of US stocks over the sample period from 1992 to 2016 is on average 44.1% against the actual realised volatility of 43.8% with an R2 being as high as...
Persistent link: https://www.econbiz.de/10012800743
In this paper, a feed-forward artificial neural network (ANN) is used to price Johannesburg Stock Exchange (JSE) Top 40 European call options using a constructed implied volatility surface. The prices generated by the ANN were compared to the prices obtained using the Black-Scholes (BS) model....
Persistent link: https://www.econbiz.de/10013183896
Persistent link: https://www.econbiz.de/10012694117
Deep learning for option pricing has emerged as a novel methodology for fast computations with applications in calibration and computation of Greeks. However, many of these approaches do not enforce any no-arbitrage conditions, and the subsequent local volatility surface is never considered. In...
Persistent link: https://www.econbiz.de/10012293261
This paper proposes a data-driven approach, by means of an Artificial Neural Network (ANN), to value financial options and to calculate implied volatilities with the aim of accelerating the corresponding numerical methods. With ANNs being universal function approximators, this method trains an...
Persistent link: https://www.econbiz.de/10012016033
Persistent link: https://www.econbiz.de/10012543628
Persistent link: https://www.econbiz.de/10014366653