Showing 1 - 10 of 13,366
We propose a new algorithm which allows easy estimation of Vector Autoregressions (VARs) featuring asymmetric priors and time varying volatilities, even when the cross sectional dimension of the system N is particularly large. The algorithm is based on a simple triangularisation which allows to...
Persistent link: https://www.econbiz.de/10011389735
We define risk spillover as the dependence of a given asset variance on the past covariances and variances of other assets. Building on this idea, we propose the use of a highly flexible and tractable model to forecast the volatility of an international equity portfolio. According to the risk...
Persistent link: https://www.econbiz.de/10010407672
We demonstrate that the parameters controlling skewness and kurtosis in popular equity return models estimated at daily frequency can be obtained almost as precisely as if volatility is observable by simply incorporating the strong information content of realized volatility measures extracted...
Persistent link: https://www.econbiz.de/10013128339
Recent literature has focuses on realized volatility models to predict financial risk. This paper studies the benefit of explicitly modeling jumps in this class of models for value at risk (VaR) prediction. Several popular realized volatility models are compared in terms of their VaR forecasting...
Persistent link: https://www.econbiz.de/10013105658
Rogers-Satchell (RS) measure is an efficient volatility measure. This paper proposes quantile RS (QRS) measure to ensure robustness and correct the downward bias of RS measure with an additive term. Moreover scaling factors are provided for different interquantile ranges to ensure unbiasedness....
Persistent link: https://www.econbiz.de/10012843381
Forecasting volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer from many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10012958968
Several novel large volatility matrix estimation methods have been developed based on the high-frequency financial data. They often employ the approximate factor model that leads to a low-rank plus sparse structure for the integrated volatility matrix and facilitates estimation of large...
Persistent link: https://www.econbiz.de/10012941598
Forecasting volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer from many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10011674479
Forecasting-volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer of many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10011730304
distributions and also with the Filtered Historical Simulation (FHS), or the Extreme Value Theory (EVT) methods. Our analysis is …
Persistent link: https://www.econbiz.de/10013126884