Showing 1 - 10 of 6,612
We analyze the impact of the estimation frequency - updating parameter estimates on a daily, weekly, monthly or quarterly basis - for commonly used GARCH models in a large-scale study, using more than twelve years (2000-2012) of daily returns for constituents of the S&P 500 index. We assess the...
Persistent link: https://www.econbiz.de/10012857089
We study a class of backtests for forecast distributions in which the test statistic is a spectral transformation that weights exceedance events by a function of the modeled probability level. The choice of the kernel function makes explicit the user's priorities for model performance. The class...
Persistent link: https://www.econbiz.de/10011927115
Returns in financial assets display consistent excess kurtosis and skewness, implying the presence of large fluctuations not forecasted by Gaussian models. This paper applies a resampling method based on the bootstrap and a bias-correction step to improve Value-at-Risk (VaR) forecasting ability...
Persistent link: https://www.econbiz.de/10011632622
Weekly, quarterly and yearly risk measures are crucial for risk reporting according to Basel III and Solvency II. For the respective data frequencies, the authors show in a simulation and back-test study that available data series are not sufficient in order to estimate Value at Risk and...
Persistent link: https://www.econbiz.de/10012827639
In this paper, we assess the informational content of daily range, realized variance, realized bipower variation, two time scale realized variance, realized range and implied volatility in daily, weekly, biweekly and monthly out-of-sample Value-at-Risk (VaR) predictions. We use the recently...
Persistent link: https://www.econbiz.de/10013113342
In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six ARCH-type models, six realized volatility models and two GARCH models augmented with realized volatility regressors. The α-th quantile of the innovation's distribution is estimated with the fully...
Persistent link: https://www.econbiz.de/10013126884
We perform a large simulation study to examine the extent to which various generalized autoregressive conditional heteroskedasticity (GARCH) models capture extreme events in stock market returns. We estimate Hill's tail indexes for individual S&P 500 stock market returns ranging from 1995-2014...
Persistent link: https://www.econbiz.de/10010529886
This paper investigates inference and volatility forecasting using a Markov switching heteroscedastic model with a fat-tailed error distribution to analyze asymmetric effects on both the conditional mean and conditional volatility of financial time series. The motivation for extending the Markov...
Persistent link: https://www.econbiz.de/10013159442
In order to provide reliable Value-at-Risk (VaR) and Expected Shortfall (ES) forecasts, this paper attempts to investigate whether an inter-day or an intra-day model provides accurate predictions. We investigate the performance of inter-day and intra-day volatility models by estimating the...
Persistent link: https://www.econbiz.de/10012910113
The present study compares the performance of the long memory FIGARCH model, with that of the short memory GARCH specification, in the forecasting of multi-period Value-at-Risk (VaR) and Expected Shortfall (ES) across 20 stock indices worldwide. The dataset is comprised of daily data covering...
Persistent link: https://www.econbiz.de/10012910119