Showing 1 - 10 of 4,297
We use machine learning methods to predict stock return volatility. Our out-of-sample prediction of realised volatility for a large cross-section of US stocks over the sample period from 1992 to 2016 is on average 44.1% against the actual realised volatility of 43.8% with an R2 being as high as...
Persistent link: https://www.econbiz.de/10012800743
Persistent link: https://www.econbiz.de/10011976731
Purpose – We use a large and rich data set consisting of over 123,000 single-family houses sold in Switzerland between 2005 and 2017 to investigate the accuracy and volatility of different methods for estimating and updating hedonic valuation models.Design/methodology/approach – We apply six...
Persistent link: https://www.econbiz.de/10011976945
Persistent link: https://www.econbiz.de/10010425541
In this paper, a feed-forward artificial neural network (ANN) is used to price Johannesburg Stock Exchange (JSE) Top 40 European call options using a constructed implied volatility surface. The prices generated by the ANN were compared to the prices obtained using the Black-Scholes (BS) model....
Persistent link: https://www.econbiz.de/10013183896
Persistent link: https://www.econbiz.de/10012694117
Persistent link: https://www.econbiz.de/10012543628
Persistent link: https://www.econbiz.de/10014366653
Persistent link: https://www.econbiz.de/10014439728
Persistent link: https://www.econbiz.de/10014380680