Showing 1 - 10 of 4,890
We propose a new algorithm which allows easy estimation of Vector Autoregressions (VARs) featuring asymmetric priors and time varying volatilities, even when the cross sectional dimension of the system N is particularly large. The algorithm is based on a simple triangularisation which allows to...
Persistent link: https://www.econbiz.de/10011389735
Adding multivariate stochastic volatility of a flexible form to large Vector Autoregressions (VARs) involving over a hundred variables has proved challenging due to computational considerations and over-parameterization concerns. The existing literature either works with homoskedastic models or...
Persistent link: https://www.econbiz.de/10012917923
We provide a formulation of stochastic volatility (SV) based on Gaussian process regression (GPR). Forecasting volatility out-of-sample, both simulation and empirical analyses show that our GPR-based stochastic volatility (GPSV) model clearly outperforms SV and GARCH benchmarks, especially at...
Persistent link: https://www.econbiz.de/10014186681
This paper investigates the ability of several generalized Bayesian vector autoregressions to cope with the extreme COVID-19 observations and discusses their impact on prior calibration for inference and forecasting purposes. It shows that the preferred model interprets the pandemic episode as a...
Persistent link: https://www.econbiz.de/10013472790
Efficient posterior simulators for two GARCH models with generalized hyperbolic disturbances are presented. The first model, GHt-GARCH, is a threshold GARCH with a skewed and heavy-tailed error distribution; in this model, the latent variables that account for skewness and heavy tails are...
Persistent link: https://www.econbiz.de/10013105412
The estimation of large vector autoregressions with stochastic volatility using standard methods is computationally very demanding. In this paper we propose to model conditional volatilities as driven by a single common unobserved factor. This is justified by the observation that the pattern of...
Persistent link: https://www.econbiz.de/10013066409
Recent research has shown that a reliable vector autoregressive model (VAR) for forecasting and structural analysis of macroeconomic data requires a large set of variables and modeling time variation in their volatilities. Yet, there are no papers jointly allowing for stochastic volatilities and...
Persistent link: https://www.econbiz.de/10012983057
We demonstrate that the parameters controlling skewness and kurtosis in popular equity return models estimated at daily frequency can be obtained almost as precisely as if volatility is observable by simply incorporating the strong information content of realized volatility measures extracted...
Persistent link: https://www.econbiz.de/10013128339
This paper compares alternative models of time-varying macroeconomic volatility on the basis of the accuracy of point and density forecasts of macroeconomic variables. In this analysis, we consider both Bayesian autoregressive and Bayesian vector autoregressive models that incorporate some form...
Persistent link: https://www.econbiz.de/10013100483
This paper compares alternative models of time-varying macroeconomic volatility on the basis of the accuracy of point and density forecasts of macroeconomic variables. In this analysis, we consider both Bayesian autoregressive and Bayesian vector autoregressive models that incorporate some form...
Persistent link: https://www.econbiz.de/10013082395