Showing 1 - 10 of 14,347
Non-parametric approach to financial time series jump estimation, using the L-Estimator, is compared with the parametric approach utilizing a Stochastic-Volatility-Jump-Diffusion (SVJD) model, estimated with MCMC and extended with Particle Filters to estimate the out-sample evolution of its...
Persistent link: https://www.econbiz.de/10012964932
The deviance information criterion (DIC) has been widely used for Bayesian model comparison. In particular, a popular metric for comparing stochastic volatility models is the DIC based on the conditional likelihood — obtained by conditioning on the latent variables. However, some recent...
Persistent link: https://www.econbiz.de/10013051070
with a second DNN. After formalizing the estimation problem within the framework of Bayesian decision theory, the article …
Persistent link: https://www.econbiz.de/10014354222
In this paper, we assess whether key relations between US interest rates have been stable over time. This is done by estimating trivariate hybrid time-varying parameter Bayesian VAR models with stochastic volatility for the three-month Treasury bill rate, the slope of the Treasury yield curve...
Persistent link: https://www.econbiz.de/10014490330
We develop importance sampling methods for computing two popular Bayesian model comparison criteria, namely, the marginal likelihood and deviance information criterion (DIC) for TVP-VARs with stochastic volatility. The proposed estimators are based on the integrated likelihood, which are...
Persistent link: https://www.econbiz.de/10013017876
In this paper, we extend the standard Gaussian stochastic-volatility Bayesian VAR by employing the generalized hyperbolic skew Student's t distribution for the innovations. Allowing the skewness parameter to vary over time, our specification permits flexible modelling of innovations in terms of...
Persistent link: https://www.econbiz.de/10015084442
Adding multivariate stochastic volatility of a flexible form to large Vector Autoregressions (VARs) involving over a hundred variables has proved challenging due to computational considerations and over-parameterization concerns. The existing literature either works with homoskedastic models or...
Persistent link: https://www.econbiz.de/10012917923
Aiming at financial applications, we study the problem of learning the volatility under market microstructure noise. Specifically, we consider noisy discrete time observations from a stochastic differential equation and develop a novel computational method to learn the diffusion coefficient of...
Persistent link: https://www.econbiz.de/10014113947
This paper presents a method for Bayesian nonparametric analysis of the return distribution in a stochastic volatility model. The distribution of the logarithm of the squared return is flexibly modelled using an infinite mixture of Normal distributions. This allows efficient Markov chain Monte...
Persistent link: https://www.econbiz.de/10013133054
A Bayesian semiparametric stochastic volatility model for financial data is developed. This estimates the return distribution from the data allowing for stylized facts such as heavy tails and jumps in prices whilst also allowing for correlation between the returns and changes in volatility, the...
Persistent link: https://www.econbiz.de/10013118198