Showing 1 - 10 of 11,184
Non-parametric approach to financial time series jump estimation, using the L-Estimator, is compared with the parametric approach utilizing a Stochastic-Volatility-Jump-Diffusion (SVJD) model, estimated with MCMC and extended with Particle Filters to estimate the out-sample evolution of its...
Persistent link: https://www.econbiz.de/10012964932
When analysing the volatility related to high frequency financial data, mostly non-parametric approaches based on realised or bipower variation are applied. This article instead starts from a continuous time diffusion model and derives a parametric analog at high frequency for it, allowing...
Persistent link: https://www.econbiz.de/10011374428
The relationship between risk and return is one of the most studied topics in finance. The majority of the literature is based on a linear, parametric relationship between expected returns and conditional volatility. This paper models the contemporaneous relationship between market excess...
Persistent link: https://www.econbiz.de/10010365633
This paper presents a method for Bayesian nonparametric analysis of the return distribution in a stochastic volatility model. The distribution of the logarithm of the squared return is flexibly modelled using an infinite mixture of Normal distributions. This allows efficient Markov chain Monte...
Persistent link: https://www.econbiz.de/10013133054
A Bayesian semiparametric stochastic volatility model for financial data is developed. This estimates the return distribution from the data allowing for stylized facts such as heavy tails and jumps in prices whilst also allowing for correlation between the returns and changes in volatility, the...
Persistent link: https://www.econbiz.de/10013118198
The relationship between risk and return is one of the most studied topics in finance. The majority of the literature is based on a linear, parametric relationship between expected returns and conditional volatility. This paper models the contemporaneous relationship between market excess...
Persistent link: https://www.econbiz.de/10013026110
In this paper, we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10009534187
In this paper, we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10013066096
A semiparametric multiplicative error model (MEM) is proposed. In traditional MEM, the innovations are typically assumed to be Gamma distributed (with one free parameter that ensures unit mean of the innovations and thus identifiability of the model), however empirical investigations unveils the...
Persistent link: https://www.econbiz.de/10013089716
Aiming at financial applications, we study the problem of learning the volatility under market microstructure noise. Specifically, we consider noisy discrete time observations from a stochastic differential equation and develop a novel computational method to learn the diffusion coefficient of...
Persistent link: https://www.econbiz.de/10014113947