Showing 1 - 10 of 365
We propose uniformly valid inference on volatility with noisy high-frequency data. We assume the observed transaction price follows a continuous-time Itô-semimartingale, contaminated by a discrete-time moving-average noise process associated with the arrival of trades. We estimate the quadratic...
Persistent link: https://www.econbiz.de/10012900993
We consider a nonparametric time series regression model. Our framework allows precise estimation of betas without the usual assumption of betas being piecewise constant. This property makes our framework particularly suitable to study individual stocks. We provide an inference framework for all...
Persistent link: https://www.econbiz.de/10012894411
This paper develops a statistical theory to estimate an unknown factor structure based on financial high-frequency data. We derive an estimator for the number of factors and consistent and asymptotically mixed-normal estimators of the loadings and factors under the assumption of a large number...
Persistent link: https://www.econbiz.de/10012937382
High-frequency financial data allow us to estimate large volatility matrices with relatively short time horizon. Many novel statistical methods have been introduced to address large volatility matrix estimation problems from a high-dimensional Ito process with microstructural noise...
Persistent link: https://www.econbiz.de/10012941604
This paper constructs an estimator for the number of common factors in a setting where both the sampling frequency and the number of variables increase. Empirically, we document that the covariance matrix of a large portfolio of US equities is well represented by a low rank common structure with...
Persistent link: https://www.econbiz.de/10013003349
In this paper, we develop econometric tools to analyze the integrated volatility (IV) of the efficient price and the dynamic properties of microstructure noise in high-frequency data under general dependent noise. We first develop consistent estimators of the variance and autocovariances of...
Persistent link: https://www.econbiz.de/10012860921
We consider the problem of estimating volatility based on high-frequency data when the observed price process is a continuous Itô semimartingale contaminated by microstructure noise. Assuming that the noise process is compatible across different sampling frequencies, we argue that it typically...
Persistent link: https://www.econbiz.de/10013220217
We use a new framework to analyze the liquidity trends in the US equity markets, based on the intra-day price trend. The analysis suggests that the proportion of daily price variation explained by jumps (either small or large) is at a historical low. Furthermore while small jumps (which are...
Persistent link: https://www.econbiz.de/10013231619
We propose an automatic machine-learning system to forecast realized volatility for S&P 100 stocks using 118 features and five machine learning algorithms. A simple average ensemble model combining all learning algorithms delivers extraordinary performance across forecast horizons, and the...
Persistent link: https://www.econbiz.de/10013234262
Several novel statistical methods have been developed to estimate large integrated volatility matrices based on high-frequency financial data. To investigate their asymptotic behaviors, they require a sub-Gaussian or finite high-order moment assumption for observed log-returns, which cannot...
Persistent link: https://www.econbiz.de/10013236780