Showing 1 - 10 of 4,246
We study a class of backtests for forecast distributions in which the test statistic is a spectral transformation that weights exceedance events by a function of the modeled probability level. The choice of the kernel function makes explicit the user's priorities for model performance. The class...
Persistent link: https://www.econbiz.de/10011927115
The paper seeks to answer the question of how price forecasting can contribute to which techniques gives the most accurate results in the futures commodity market. A total of two families of models (decision trees, artificial intelligence) were used to produce estimates for 2018 and 2022 for 21-...
Persistent link: https://www.econbiz.de/10014233184
Persistent link: https://www.econbiz.de/10014338829
In this article, the Universal Approximation Theorem of Artificial Neural Networks (ANNs) is applied to the SABR stochastic volatility model in order to construct highly efficient representations. Initially, the SABR approximation of Hagan et al. [2002] is considered, then a more accurate...
Persistent link: https://www.econbiz.de/10012907596
The current financial crisis offers a unique opportunity to investigate the leading properties of market indicators in a stressed environment and their usefulness from a banking supervision perspective. One pool of relevant information that has been little explored in the empirical literature is...
Persistent link: https://www.econbiz.de/10014187825
In this paper, we assess the informational content of daily range, realized variance, realized bipower variation, two time scale realized variance, realized range and implied volatility in daily, weekly, biweekly and monthly out-of-sample Value-at-Risk (VaR) predictions. We use the recently...
Persistent link: https://www.econbiz.de/10013113342
In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six ARCH-type models, six realized volatility models and two GARCH models augmented with realized volatility regressors. The α-th quantile of the innovation's distribution is estimated with the fully...
Persistent link: https://www.econbiz.de/10013126884
Persistent link: https://www.econbiz.de/10010442724
Persistent link: https://www.econbiz.de/10013163805
We evaluate the importance of nonlinear interactions in volatility forecasting by comparing the predictive power of decision tree ensemble models relative to classical ones for normalized at-the-money implied volatility innovations. We measure the economic significance of these predictions in...
Persistent link: https://www.econbiz.de/10012824119