Showing 1 - 10 of 129
In this paper, I propose an instrumental variable (IV) estimation procedure to estimate global VAR (GVAR) models and show that it leads to consistent and asymptotically normal estimates of the parameters. I also provide computationally simple conditions that guarantee that the GVAR model is stable.
Persistent link: https://www.econbiz.de/10010293999
Factor models can cope with many variables without running into scarce degrees of freedom problems often faced in a regression-based analysis. In this article we review recent work on dynamic factor models that have become popular in macroeconomic policy analysis and forecasting. By means of an...
Persistent link: https://www.econbiz.de/10010295783
This paper gives a brief survey of forecasting with panel data. Starting with a simple error component regression and surveying best linear unbiased prediction under various assumptions of the disturbance term. This includes various ARMA models as well as spatial autoregressive models. The paper...
Persistent link: https://www.econbiz.de/10010295814
This paper considers Bayesian regression with normal and doubleexponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range...
Persistent link: https://www.econbiz.de/10010295821
We model panel data of crime careers of juveniles from a Dutch Judicial Juvenile Institution. The data are decomposed into a systematic and an individual-specific component, of which the systematic component reflects the general time-varying conditions including the criminological climate....
Persistent link: https://www.econbiz.de/10010325431
Likelihood based inference for multi-state latent factor intensity models is hindered by the fact that exact closed-form expressions for the implied data density are not available. This is a common and well-known problem for most parameter driven dynamic econometric models. This paper reviews,...
Persistent link: https://www.econbiz.de/10010325837
An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear log-density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian...
Persistent link: https://www.econbiz.de/10010326501
This Paper proposes a new forecasting method that exploits information from a large panel of time series. The method is based on the generalized dynamic factor model proposed in Forni, Hallin, Lippi, and Reichlin (2000), and takes advantage of the information on the dynamic covariance structure...
Persistent link: https://www.econbiz.de/10010328558
We estimate the Phillips curve with an exchange rate shock to the Brazilian economy. Besides panel data, we estimate the Phillips curve by time series methodology, including Bayesian techniques and Smoothing Transition Regressions (STR) model. The econometric results show three important...
Persistent link: https://www.econbiz.de/10010330855
This paper considers quasi-maximum likelihood estimations of a dynamic approximate factor model when the panel of time series is large. Maximum likelihood is analyzed under different sources of misspecification: omitted serial correlation of the observations and cross-sectional correlation of...
Persistent link: https://www.econbiz.de/10011604720