Showing 1 - 10 of 2,438
The present study compares the performance of the long memory FIGARCH model, with that of the short memory GARCH specification, in the forecasting of multi-period Value-at-Risk (VaR) and Expected Shortfall (ES) across 20 stock indices worldwide. The dataset is comprised of daily data covering...
Persistent link: https://www.econbiz.de/10012910119
We investigate the use of Generative Adversarial Networks (GANs) for probabilistic forecasting of financial time series. To this end, we introduce a novel economics-driven loss function for the generator. This newly designed loss function renders GANs more suitable for a classification task, and...
Persistent link: https://www.econbiz.de/10014258279
We develop efficient simulation techniques for Bayesian inference on switching GARCH models. Our contribution to existing literature is manifold. First, we discuss different multi-move sampling techniques for Markov Switching (MS) state space models with particular attention to MS-GARCH models....
Persistent link: https://www.econbiz.de/10013088788
This paper proposes a Bayesian, graph-based approach to identification in vector autoregressive (VAR) models. In our Bayesian graphical VAR (BGVAR) model, the contemporaneous and temporal causal structures of the structural VAR model are represented by two different graphs. We also provide an...
Persistent link: https://www.econbiz.de/10013064757
This paper proposes a novel approach to the combination of conditional covariancematrix forecasts based on the use of the Generalized Method of Moments (GMM). Itis shown how the procedure can be generalized to deal with large dimensional systemsby means of a two-step strategy. The finite sample...
Persistent link: https://www.econbiz.de/10005865451
Common approaches to test for the economic value of directional forecasts are based on the classical Chi-square test for independence, Fisher’s exact test or the Pesaran and Timmerman (1992) test for market timing. These tests are asymptotically valid for serially independent observations....
Persistent link: https://www.econbiz.de/10003796145
Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates asymmetry and long memory....
Persistent link: https://www.econbiz.de/10010259630
Abreu and Brunnermeier (2003) have argued that bubbles are not suppressed by arbitrageurs because they fail to synchronise on the uncertain beginning of the bubble. We propose an indirect quantitative test of this hypothesis and confront it with the alternative according to which bubbles persist...
Persistent link: https://www.econbiz.de/10011507794
Recent literature has focuses on realized volatility models to predict financial risk. This paper studies the benefit of explicitly modeling jumps in this class of models for value at risk (VaR) prediction. Several popular realized volatility models are compared in terms of their VaR forecasting...
Persistent link: https://www.econbiz.de/10013105658
The R package ldhmm is developed for the study of financial time series using Hidden Markov Model (HMM) with the lambda distribution framework. In particular, S&P 500 index is studied in depth due to its importance in finance and its long history. Major features in the index, such as regime...
Persistent link: https://www.econbiz.de/10012955070