Showing 1 - 10 of 911
This paper proposes nonparametric kernel-smoothing estimation for panel data to examine the degree of heterogeneity across cross-sectional units. We first estimate the sample mean, autocovariances, and autocorrelations for each unit and then apply kernel smoothing to compute their density...
Persistent link: https://www.econbiz.de/10012899943
This paper investigates the estimation and inference of spatial panel data models in which the regression coefficient vector is a trending function. We use time differences to eliminate the individual effects and employ GMM estimations for regression coefficients with both linear and quadratic...
Persistent link: https://www.econbiz.de/10013292793
We consider the problem of ex-ante forecasting conditional correlation patterns using ultra high frequency data. Flexible semiparametric predictors referring to the class of dynamic panel and dynamic factor models are adopted for daily forecasts. The parsimonious set up of our approach allows to...
Persistent link: https://www.econbiz.de/10010296287
In this selective review, we first provide some empirical examples that motivate the usefulness of semi-nonparametric techniques in modelling economic and financial time series. We describe popular classes of semi-nonparametric dynamic models and some temporal dependence properties. We then...
Persistent link: https://www.econbiz.de/10010288336
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10003635965
Measuring and modeling financial volatility is the key to derivative pricing, asset allocation and risk management.The recent availability of high-frequency data allows for refined methods in this field.In particular, more precise measures for the daily or lower frequency volatility can be...
Persistent link: https://www.econbiz.de/10003727640
Normal distribution of the residuals is the traditional assumption in the classical multivariate time series models. Nevertheless it is not very often consistent with the real data. Copulae allows for an extension of the classical time series models to nonelliptically distributed residuals. In...
Persistent link: https://www.econbiz.de/10003850706
There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10003953027
This chapter deals with nonparametric estimation of the risk neutral density. We present three different approaches which do not require parametric functional assumptions on the underlying asset price dynamics nor on the distributional form of the risk neutral density. The first estimator is a...
Persistent link: https://www.econbiz.de/10003953034
This paper make an overview of the copula theory from a practical side. We consider different methods of copula estimation and different Goodness-of-Fit tests for model selection. In the GoF section we apply Kolmogorov-Smirnov and Cramer-von-Mises type tests and calculate power of these tests...
Persistent link: https://www.econbiz.de/10003953039