Showing 1 - 10 of 7,609
This paper concerns estimating parameters in a high-dimensional dynamic factormodel by the method of maximum likelihood. To accommodate missing data in theanalysis, we propose a new model representation for the dynamic factor model. Itallows the Kalman filter and related smoothing methods to...
Persistent link: https://www.econbiz.de/10011377572
We present new results for the likelihood-based analysis of the dynamic factor model that possibly includes intercepts and explanatory variables. The latent factors are modelled by stochastic processes. The idiosyncratic disturbances are specified as autoregressive processes with mutually...
Persistent link: https://www.econbiz.de/10011373811
This paper concerns estimating parameters in a high-dimensional dynamic factor model by the method of maximum likelihood. To accommodate missing data in the analysis, we propose a new model representation for the dynamic factor model. It allows the Kalman filter and related smoothing methods to...
Persistent link: https://www.econbiz.de/10012756283
This paper considers quasi-maximum likelihood estimations of a dynamic approximate factor model when the panel of time series is large. Maximum likelihood is analyzed under different sources of misspecification: omitted serial correlation of the observations and cross-sectional correlation of...
Persistent link: https://www.econbiz.de/10013317480
An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear log-density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian...
Persistent link: https://www.econbiz.de/10013123266
Persistent link: https://www.econbiz.de/10015136017
Persistent link: https://www.econbiz.de/10010199465
Persistent link: https://www.econbiz.de/10011743785
This paper reestablishes the main results in Bai (2003) and Bai and Ng (2006) for high dimensional nonlinear factor models, with slightly stronger conditions on the relative magnitude of N(number of subjects) and T(number of time periods). Factors and loadings are estimated by maximum...
Persistent link: https://www.econbiz.de/10012849457
Persistent link: https://www.econbiz.de/10012197832