Showing 1 - 10 of 13
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10010325676
This paper concerns estimating parameters in a high-dimensional dynamic factormodel by the method of maximum likelihood. To accommodate missing data in theanalysis, we propose a new model representation for the dynamic factor model. Itallows the Kalman filter and related smoothing methods to...
Persistent link: https://www.econbiz.de/10010325649
Persistent link: https://www.econbiz.de/10003645204
Persistent link: https://www.econbiz.de/10003808308
Persistent link: https://www.econbiz.de/10003482698
Persistent link: https://www.econbiz.de/10003973301
We model panel data of crime careers of juveniles from a Dutch Judicial Juvenile Institution. The data are decomposed into a systematic and an individual-specific component, of which the systematic component reflects the general time-varying conditions including the criminological climate....
Persistent link: https://www.econbiz.de/10011372520
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10011373810
The basic structural time series model has been designed for the modelling and forecasting of seasonal economic time series. In this paper we explore a generalisation of the basic structural time series model in which the time-varying trigonometric terms associated with different seasonal...
Persistent link: https://www.econbiz.de/10011379642
We explore a periodic analysis in the context of unobserved components time series models that decompose time series into components of interest such as trend and seasonal. Periodic time series models allow dynamic characteristics to depend on the period of the year, month, week or day. In the...
Persistent link: https://www.econbiz.de/10011342560