Showing 1 - 4 of 4
We consider zero-sum stochastic games with Borel state spaces satisfying a generalized geometric ergodicity condition. We prove under fairly general assumptions that the optimality equation has a solution which is unique up to an additive constant. Copyright Springer-Verlag Berlin Heidelberg 2001
Persistent link: https://www.econbiz.de/10010999660
We consider zero-sum stochastic games with Borel state spaces satisfying a generalized geometric ergodicity condition. We prove under fairly general assumptions that the optimality equation has a solution which is unique up to an additive constant. Copyright Springer-Verlag Berlin Heidelberg 2001
Persistent link: https://www.econbiz.de/10010847619
In this paper we study zero-sum stochastic games with Borel state spaces. We make some stochastic stability assumptions on the transition structure of the game which imply the so-called w-uniform geometric ergodicity of Markov chains induced by stationary strategies of the players. Under such...
Persistent link: https://www.econbiz.de/10010847651
In this paper we study zero-sum stochastic games with Borel state spaces. We make some stochastic stability assumptions on the transition structure of the game which imply the so-called w-uniform geometric ergodicity of Markov chains induced by stationary strategies of the players. Under such...
Persistent link: https://www.econbiz.de/10010950072