Showing 1 - 5 of 5
Modular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. We propose an O(mn)-algorithm for the recognition of a modular set of a monotone Boolean function f with m prime implicants and n variables. Using...
Persistent link: https://www.econbiz.de/10005288394
Modular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. Most appli- cations can be formulated in the framework of Boolean functions. In this paper we give a uni_ed treatment of modular decomposition of...
Persistent link: https://www.econbiz.de/10005288413
We consider the Capacitated Economic Lot Size problem with piecewise linear production costs and general holding costs, which is an NP-hard problem but solvable in pseudo-polynomial time. A straightforward dynamic programming approach to this problem results in an [TeX: $O(n^2 \bar{c} \bar{d}...
Persistent link: https://www.econbiz.de/10008570637
We present algorithms to calculate the stability radius of optimal or approximate solutions of binary programming problems with a min-sum or min-max objective function. Our algorithms run in polynomial time if the optimization problem itself is polynomially solvable. We also extend our results...
Persistent link: https://www.econbiz.de/10008584791
In this paper we present new bounds on the basic cycle time for optimal methods to solve the JRP. They are tighter than the ones reported in Viswanathan [7]. We carry out extensive numerical experiments to compare them and to investigate the computational complexity.
Persistent link: https://www.econbiz.de/10004991117