Showing 1 - 10 of 12
We propose a new approach to sample unobserved states conditional on available data in (conditionally) linear unobserved component models when some of the observations are missing. The approach is based on the precision matrix of the states and model variables, which is sparse and banded in many...
Persistent link: https://www.econbiz.de/10012510141
This paper discusses a factor model for estimating monthly GDP using a large number of monthly and quarterly time series in real-time. To take into account the different periodicities of the data and missing observations at the end of the sample, the factors are estimated by applying an EM...
Persistent link: https://www.econbiz.de/10010295822
This paper discusses pooling versus model selection for now- and forecasting in the presence of model uncertainty with large, unbalanced datasets. Empirically, unbalanced data is pervasive in economics and typically due to different sampling frequencies and publication delays. Two model classes...
Persistent link: https://www.econbiz.de/10010298750
This paper considers factor forecasting with national versus factor forecasting withinternational data. We forecast German GDP based on a large set of about 500 time series, consisting of German data as well as data from Euro-area and G7 countries. For factor estimation, we consider standard...
Persistent link: https://www.econbiz.de/10010298757
This paper considers factor estimation from heterogenous data, where some of the variables are noisy and only weakly informative for the factors. To identify the irrelevant variables, we search for zero rows in the loadings matrix of the factor model. To sharply separate these irrelevant...
Persistent link: https://www.econbiz.de/10010310948
We propose a new approach to sample unobserved states conditional on available data in (conditionally) linear unobserved component models when some of the observations are missing. The approach is based on the precision matrix of the states and model variables, which is sparse and banded in many...
Persistent link: https://www.econbiz.de/10012511370
This paper considers factor estimation from heterogenous data, where some of the variables are noisy and only weakly informative for the factors. To identify the irrelevant variables, we search for zero rows in the loadings matrix of the factor model. To sharply separate these irrelevant...
Persistent link: https://www.econbiz.de/10010957109
This paper discusses a factor model for estimating monthly GDP using a large number of monthly and quarterly time series in real-time. To take into account the different periodicities of the data and missing observations at the end of the sample, the factors are estimated by applying an EM...
Persistent link: https://www.econbiz.de/10005083178
This paper considers factor forecasting with national versus factor forecasting withinternational data. We forecast German GDP based on a large set of about 500 time series, consisting of German data as well as data from Euro-area and G7 countries. For factor estimation, we consider standard...
Persistent link: https://www.econbiz.de/10005083295
This paper discusses pooling versus model selection for now- and forecasting in the presence of model uncertainty with large, unbalanced datasets. Empirically, unbalanced data is pervasive in economics and typically due to di¤erent sampling frequencies and publication delays. Two model classes...
Persistent link: https://www.econbiz.de/10005083316