Showing 1 - 3 of 3
Let L be a linear space of real bounded random variables on the probability space (omega,A, P0). There is a finitely additive probability P on A, such that P tilde P0 and EP (X) = 0 for all X in L, if and only if cEQ(X) = ess sup(-X), X in L, for some constant c 0 and (countably additive)...
Persistent link: https://www.econbiz.de/10010335300
Let L be a linear space of real bounded random variables on the probability space (omega,A, P0). There is a finitely additive probability P on A, such that P tilde P0 and EP (X) = 0 for all X in L, if and only if cEQ(X) = ess sup(-X), X in L, for some constant c 0 and (countably additive)...
Persistent link: https://www.econbiz.de/10010343882
Let L be a linear space of real bounded random variables on the probability space (omega,A, P0). There is a finitely additive probability P on A, such that P tilde P0 and EP (X) = 0 for all X in L, if and only if cEQ(X) = ess sup(-X), X in L, for some constant c 0 and (countably additive)...
Persistent link: https://www.econbiz.de/10009651044